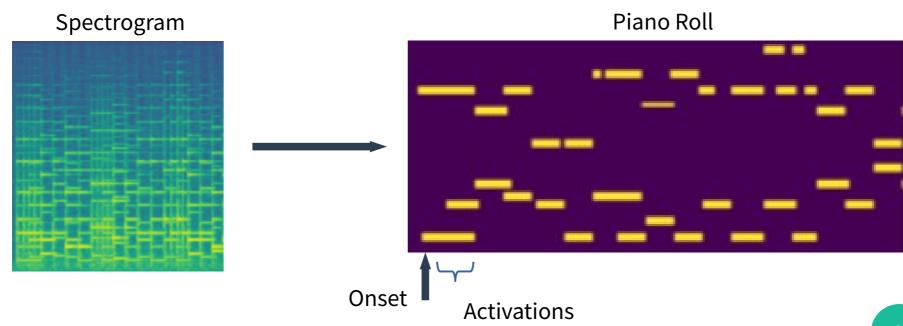


Piano Transcription Using Deep Neural Networks

Nicholas Esterer December 20th, 2018

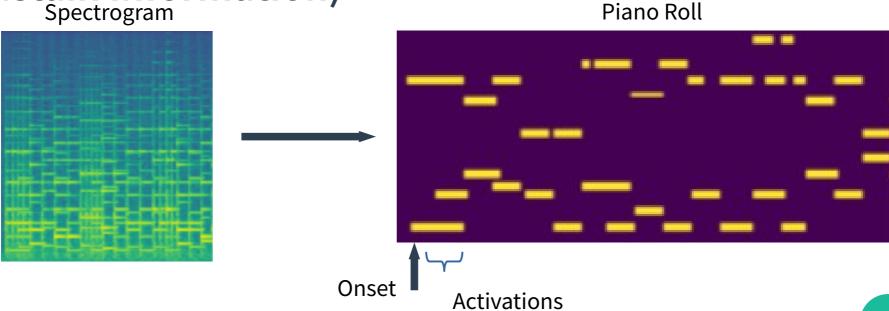
Goal

 Transcribe note activations and onsets from recordings of piano performances.



Goal

- Transcribe note activations and onsets from recordings of piano performances.



Example recording from dataset

Example recording from dataset

Example of a real recording

Example of a real recording

Goals

- We would like to transcribe recordings like the latter
 - We work with recordings of Glenn Gould
- But we only have examples like the former to work with
 - Real recordings noisy, more variation in speed, dynamic, expression.

Goals

- We would like to transcribe recordings like the latter
 - We work with recordings of Glenn Gould
- But we only have examples like the former to work with
 - Real recordings noisy, more variation in speed, dynamic, expression.
- Transcription should be performed "online"

Outline

Technique

- Convolutional neural network, recurrent neural network

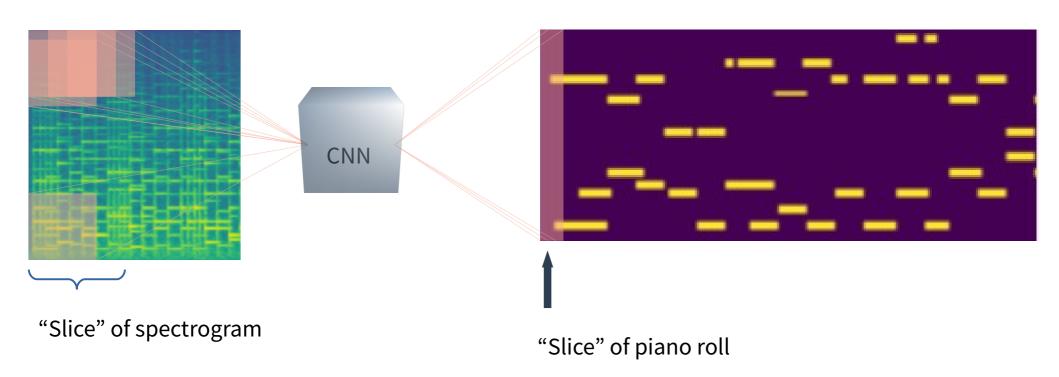
Initial results

Performance on test set and real recordings

Directions for improvement

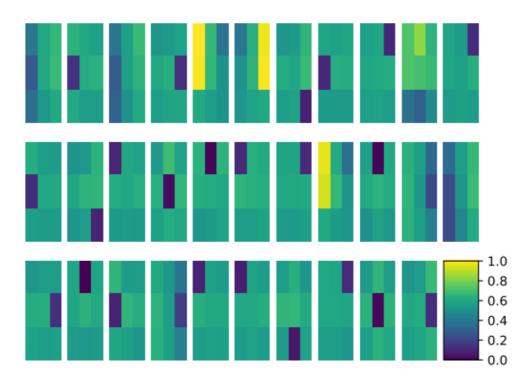
- Adding noise and regularization
- Dataset augmentation
- Alternative piano roll representations

Convolutional neural network (Kelz 2016)

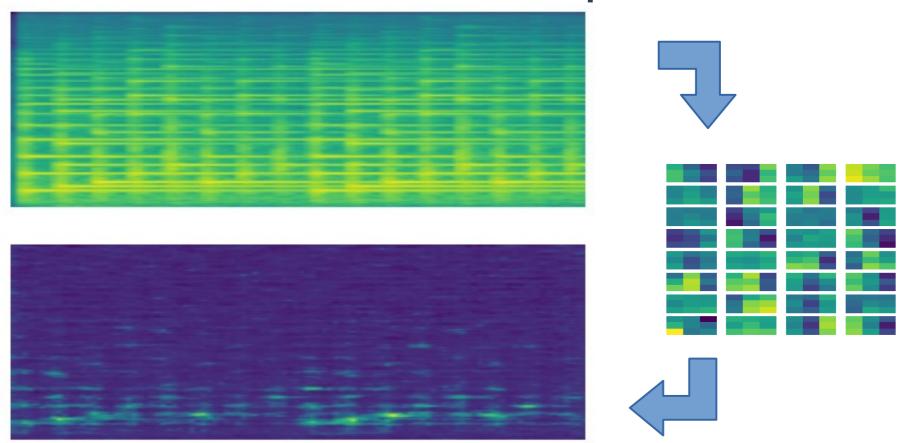


Example kernels from the frame CNN.

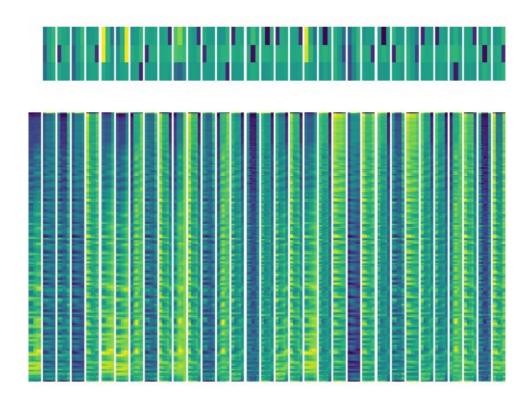
Example kernels from the frame CNN.

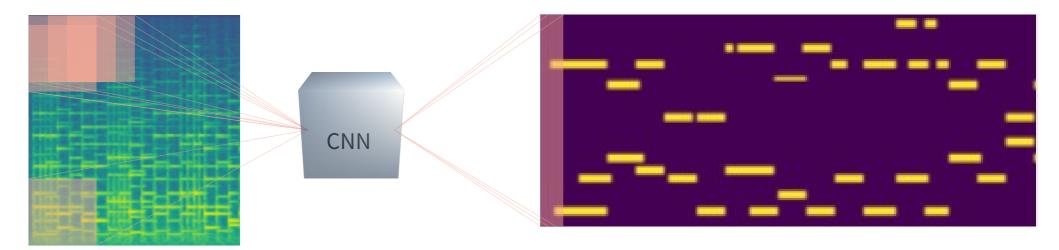


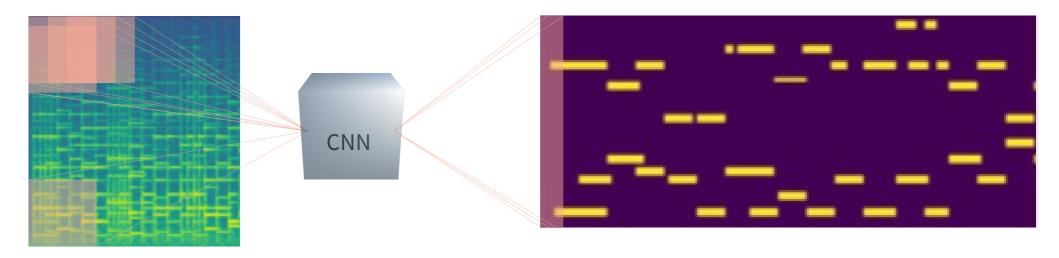
Action of the kernels on some input



Kernels and the resulting activations from the frame CNN

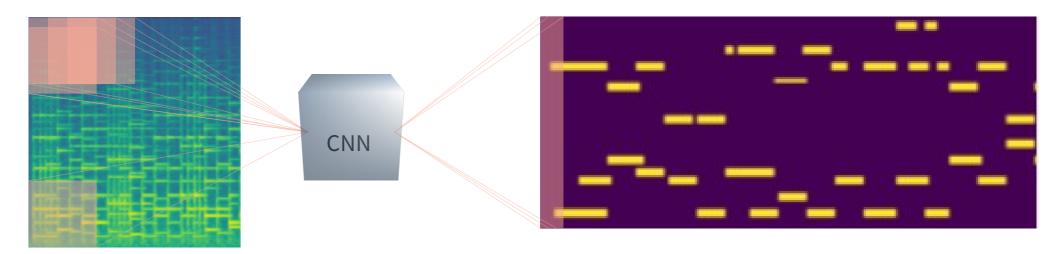






	Activation	Onset	Note with offset
Kelz et al 2016	.7160	.5094	.2314

Music is contextual

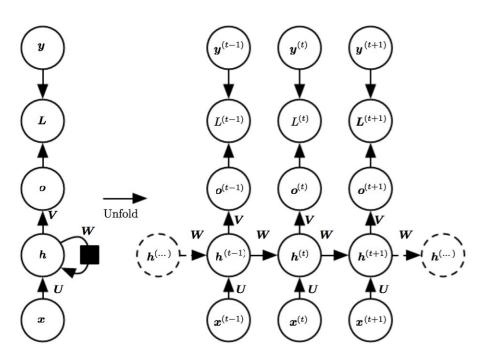


	Activation	Onset	Note with offset
Kelz et al 2016	.7160	.5094	.2314

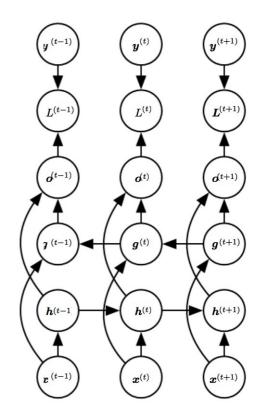
This motivates the use of recurrent networks

This motivates the use of recurrent networks

Unidirectional recurrent network

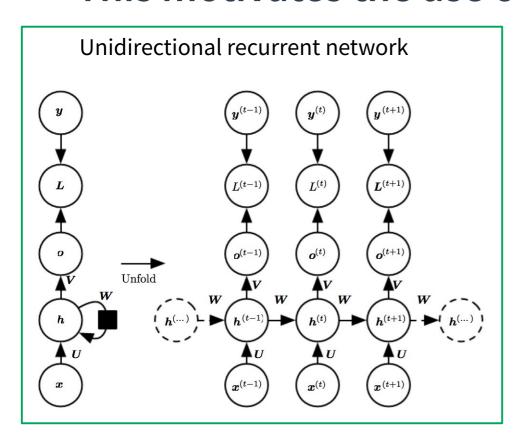


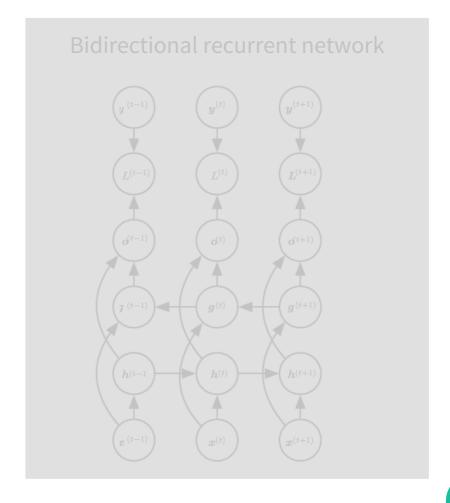
Bidirectional recurrent network



Goodfellow et al (2016)

This motivates the use of recurrent networks

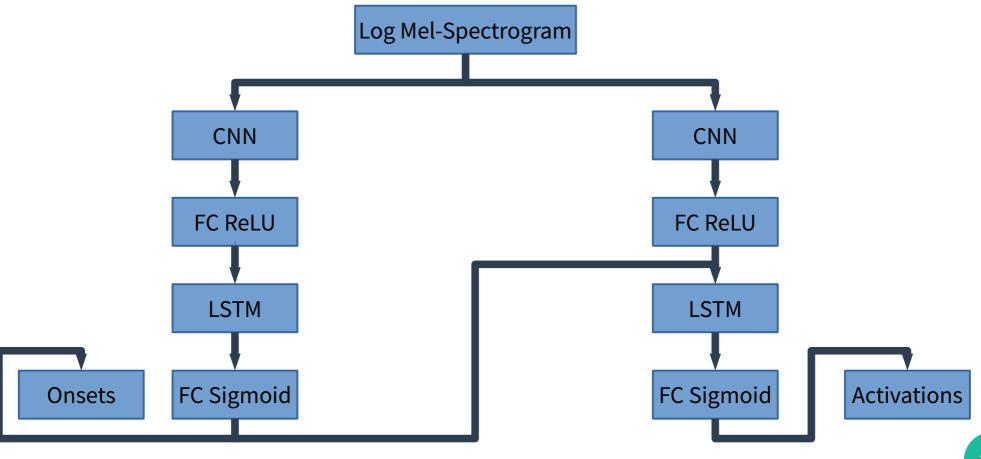




Goodfellow et al (2016)

Network architecture

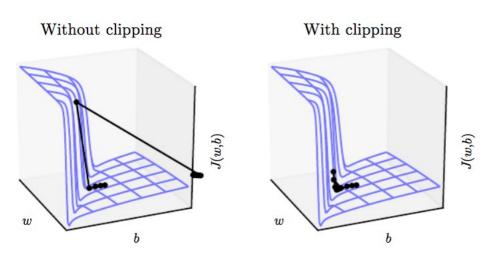
- Based on (Hawthorne et al 2018)
- Our LSTM only looks into the past (online)

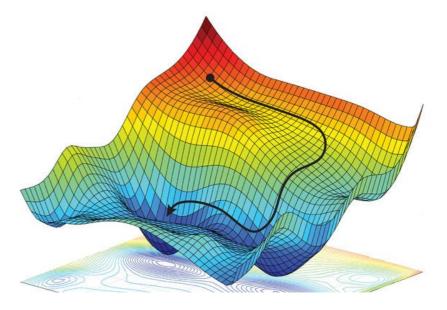


Training Strategy

Training using Adam optimizer

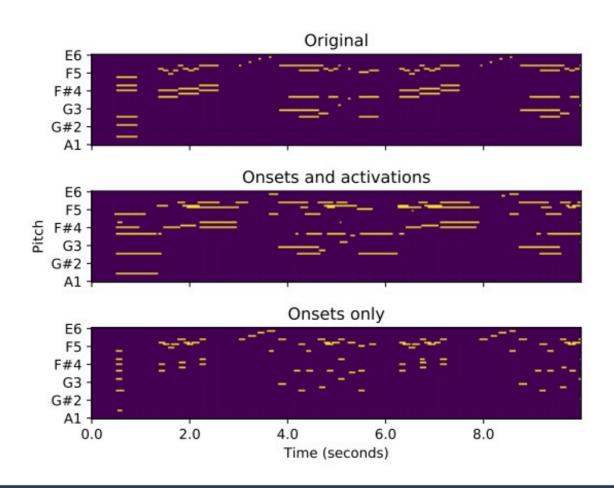
- Adaptive gradient descent algorithm
- Learning rate scaling
- Gradient clipping

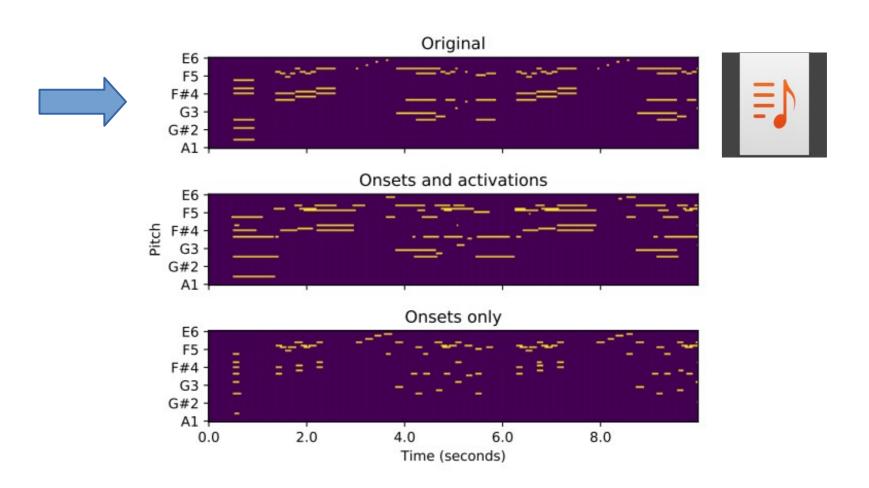


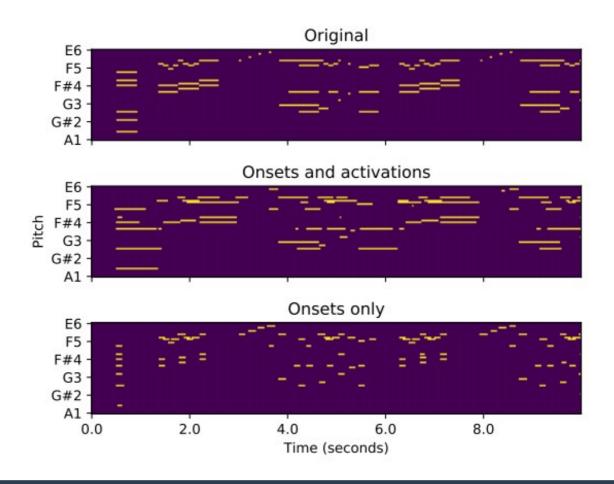


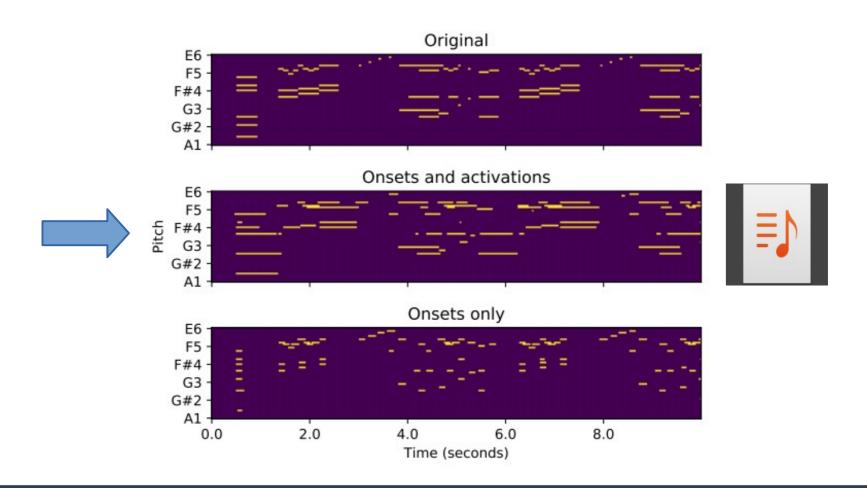
https://www.sciencemag.org/

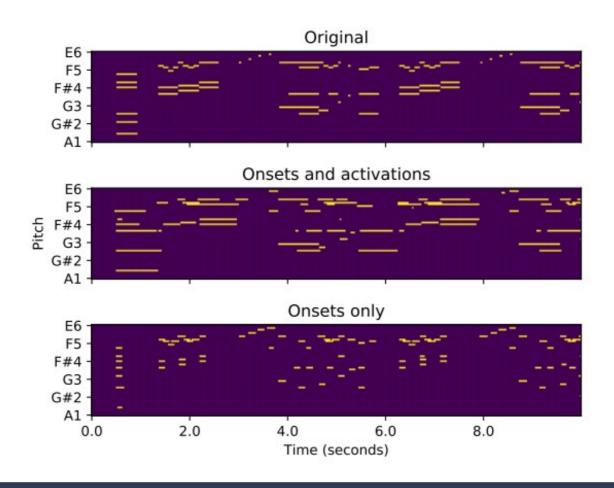
Goodfellow et al (2016)

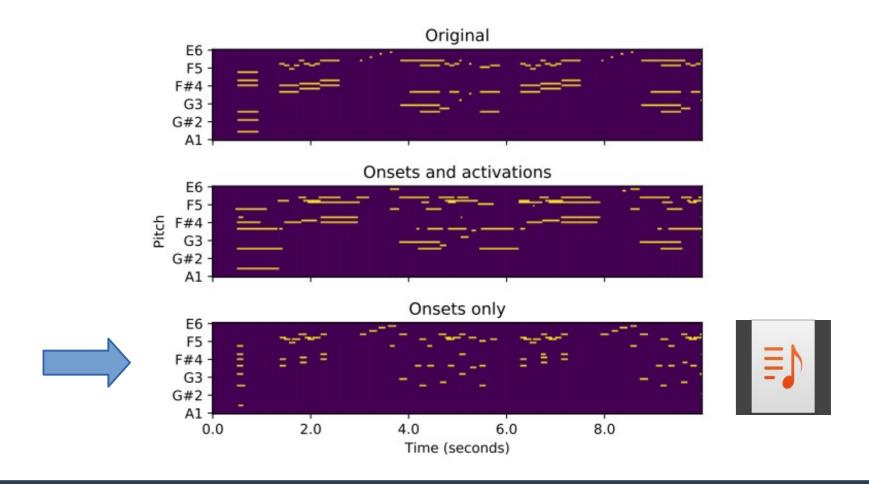


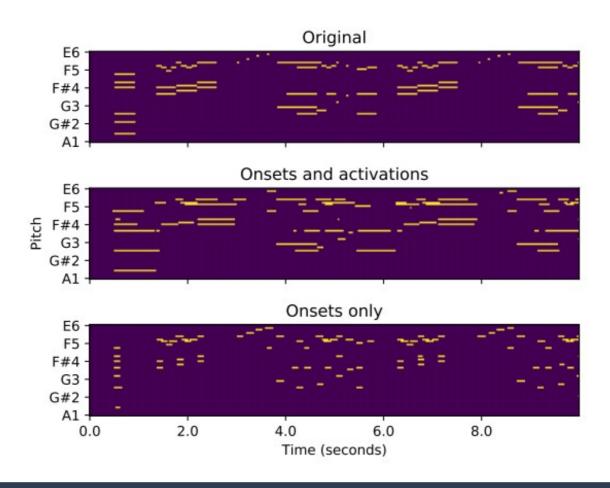






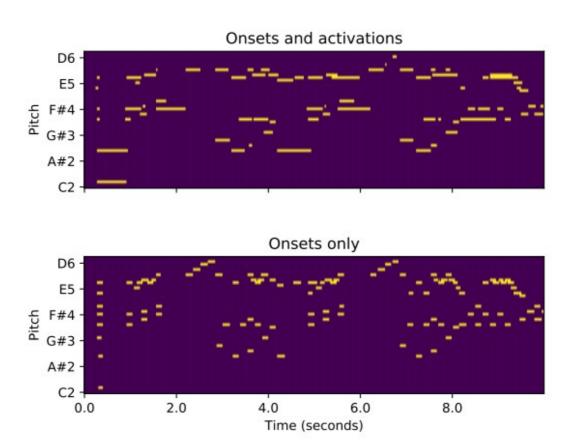


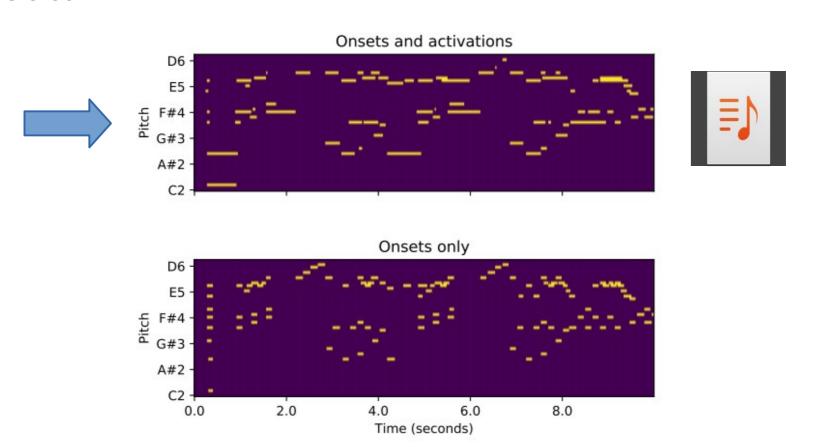


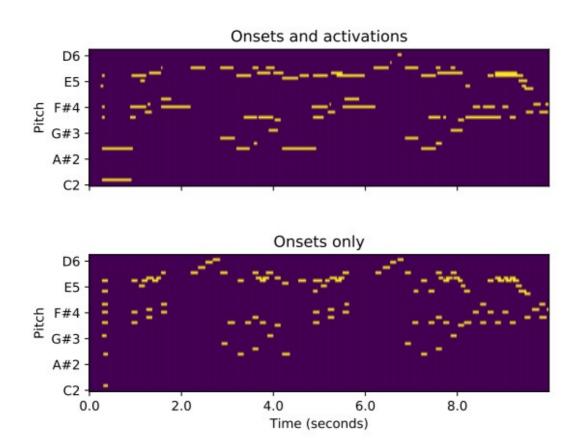


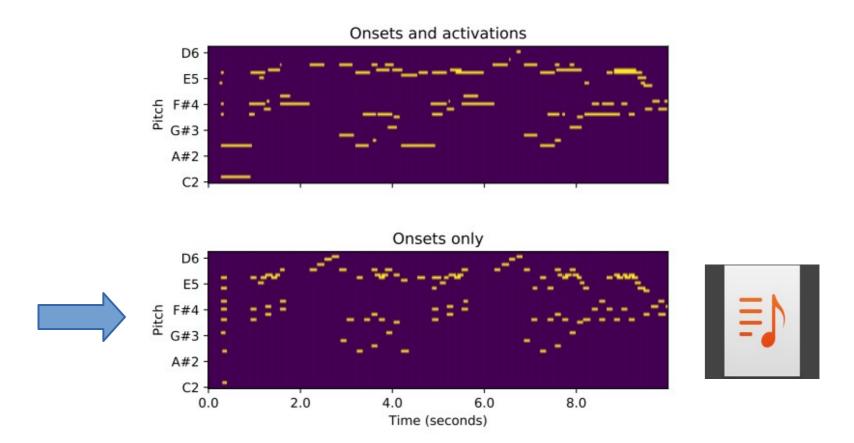
Mozart Sonata performed by Glenn Gould

Mozart Sonata performed by Glenn Gould



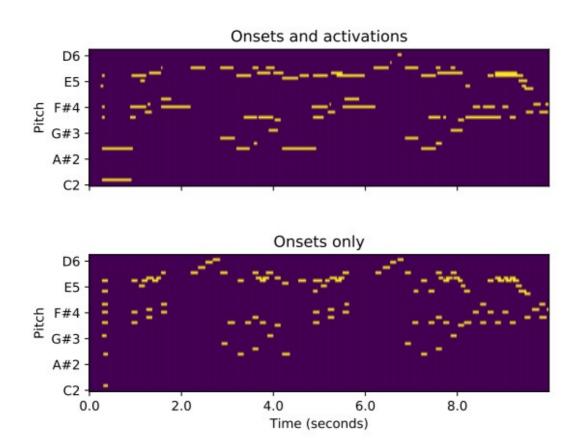






Results

Transcription of Mozart Sonata performed by Glenn Gould



 Notable difference between example in our dataset and the recording performed by Gould

Recording from dataset

Recording from dataset

Gould recording

Gould recording

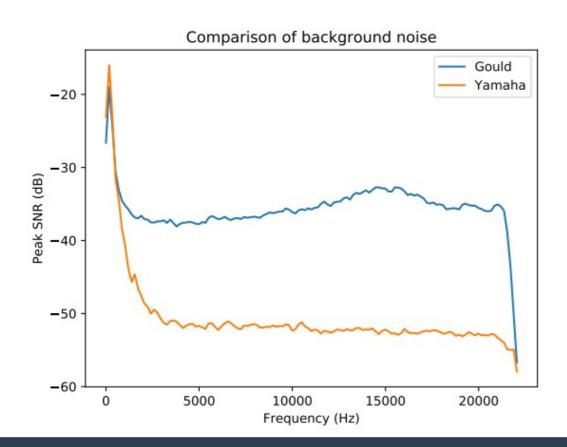
Gould recording

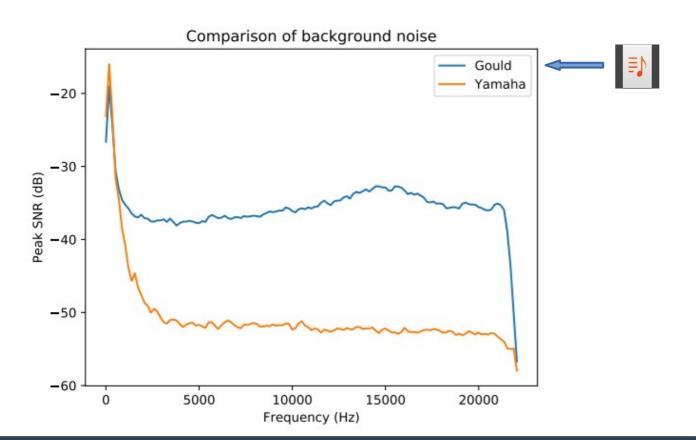
- Piano tuning is sharper
- Played at a faster tempo
- More room sound, different microphone techniques

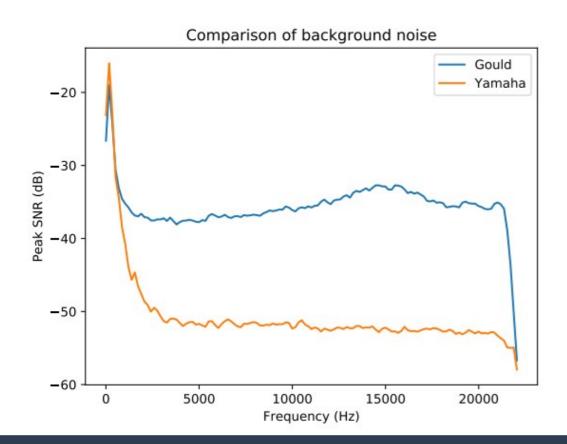
- We can alter our data to be qualitatively like Gould's recordings
 - Pitch shifting (here +25 cents)
 - Time compression (here 25% faster)
 - Reverb

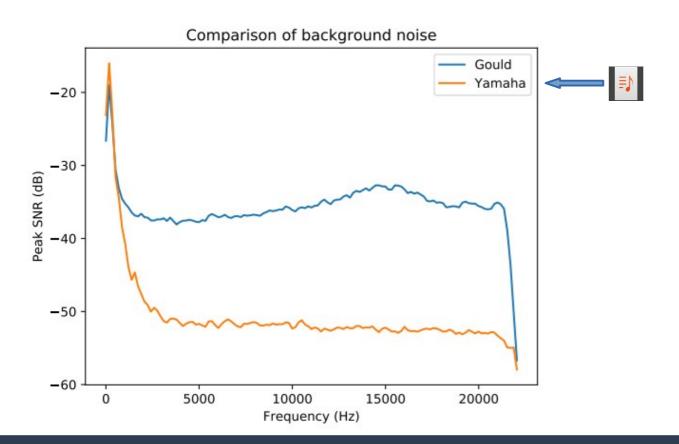
- We can alter our data to be qualitatively like Gould's recordings
 - Pitch shifting (here +25 cents)
 - Time compression (here 25% faster)
 - Reverb

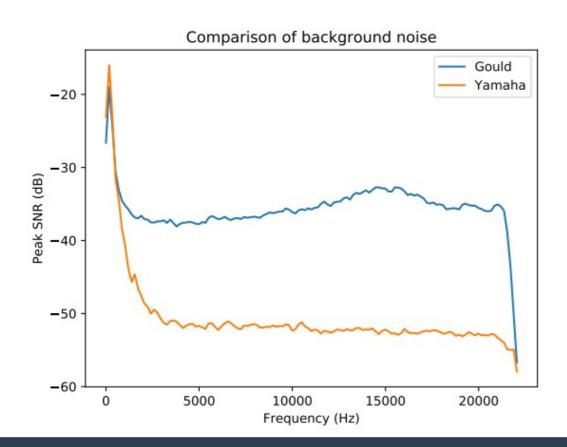
- We can alter our data to be qualitatively like Gould's recordings
 - Pitch shifting (here +25 cents)
 - Time compression (here 25% faster)
 - Reverb





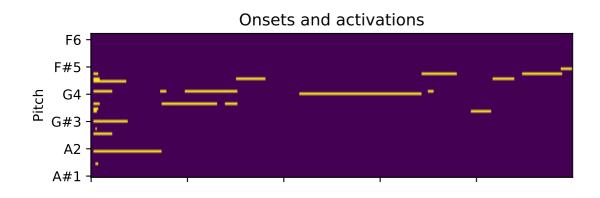


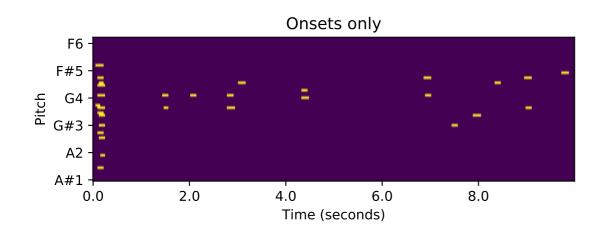


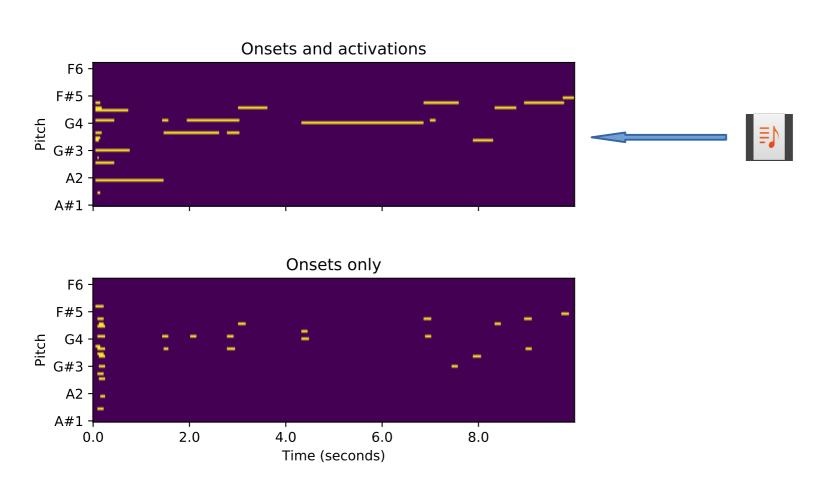


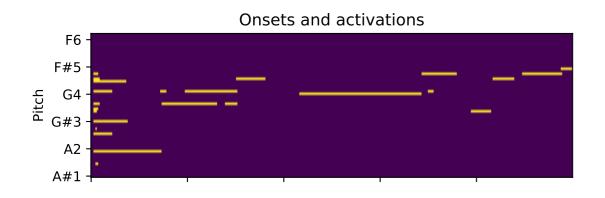
Transcription attempt without regularization

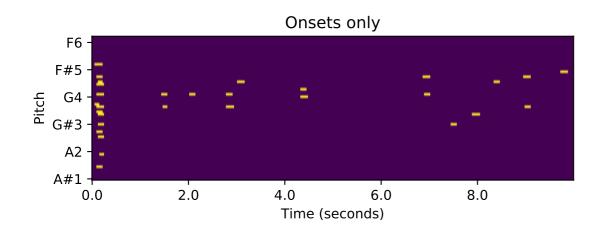
Original

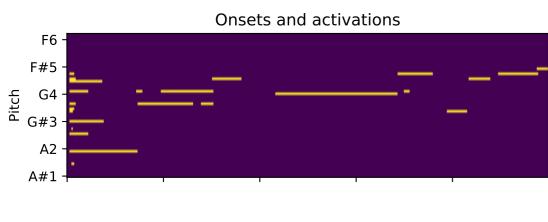


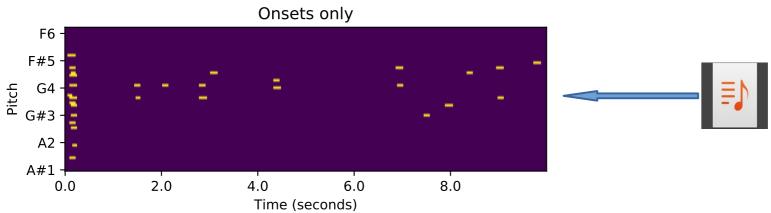


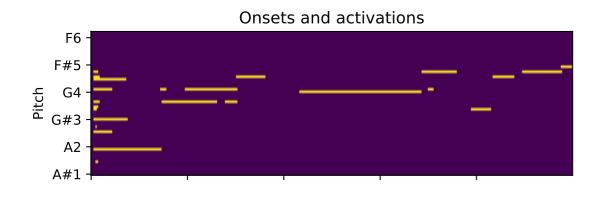


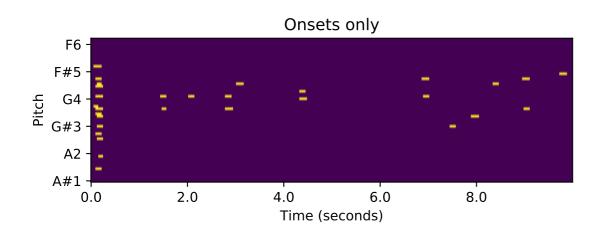




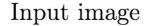


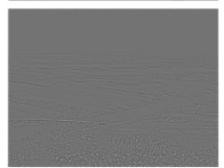






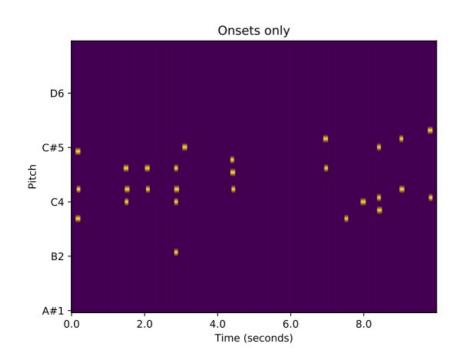
- Prevent algorithm from over-fitting to noise-free data
 - Add <u>unique</u> noise to each training example
- Make algorithm invariant to recording's dynamic range
 - Perform local contrast normalization (LCN)



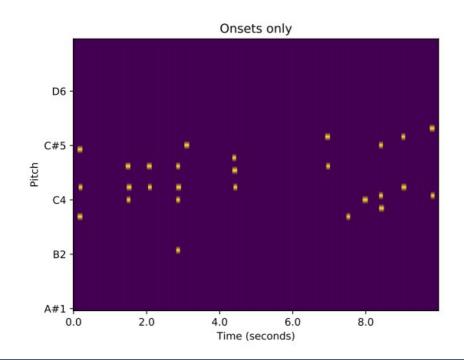


LCN Goodfellow et al (2016)

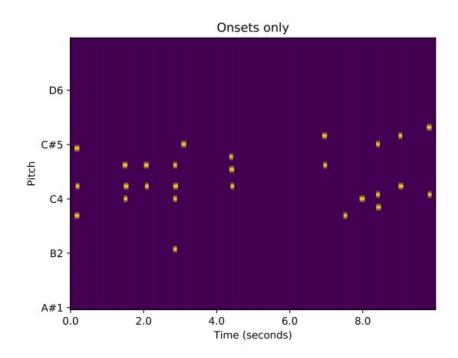
- Transcription attempt with regularization
 - Added unique noise to data points giving SNR of -40 dB
 - Applied LCN



- Transcription attempt with regularization
 - Added unique noise to data points giving SNR of -40 dB
 - Applied LCN



- Transcription attempt with regularization
 - Added unique noise to data points giving SNR of -40 dB
 - Applied LCN



Evaluation

F-Measure Scores: With and without regularization

	Activation	Onset	Note with offset
YAMAHA DKV & MAPS	.6451	.8268	.2847
YAMAHA DKV & MAPS with augmentations and NR	.6069	.7651	.2279
YAMAHA DKV & MAPS with augmentations NR and LCN	.5973	.7367	.2127
Google O&F 2018 (MAPS and offline)	.7830	.8229	.5022
Kelz et al 2016 (MAPS)	.7160	.5094	.2314

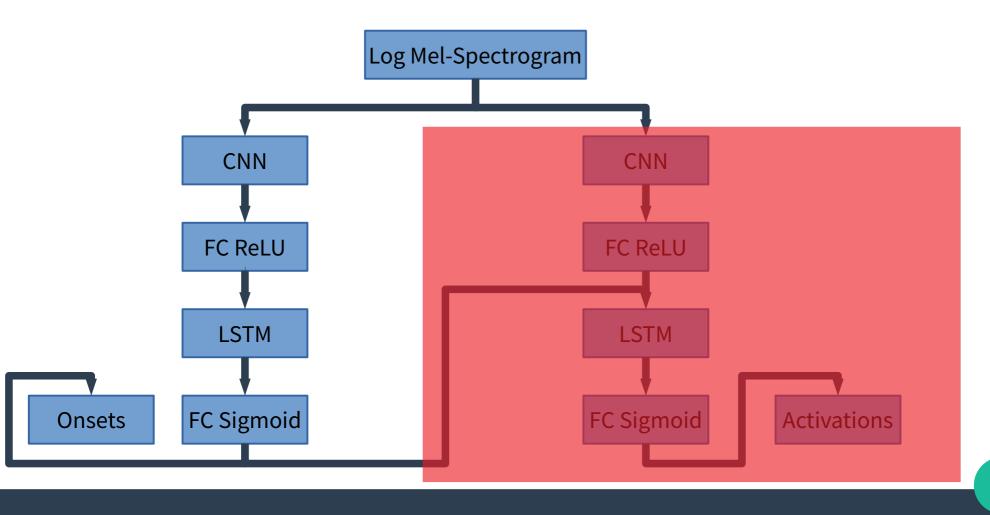
Evaluation

F-Measure Scores: evaluated on augmented data only

	Activation	Onset	Note with offset
YAMAHA DKV & MAPS	.5594	.7052	.1886
YAMAHA DKV, MAPS with augmentations	.5236	.7252	.1894
YAMAHA DKV & MAPS with augmentations and NR	.5509	.7429	.1952
YAMAHA DKV & MAPS with augmentations, NR and LCN	.5604	.7189	.1879

Model Revision

Remove activations detector when only looking into the past



Architecture evaluation

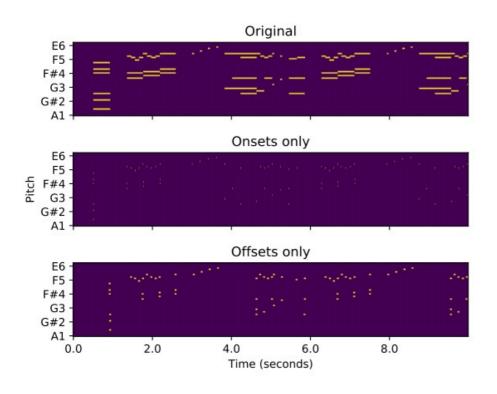
- Inference complexity (con)
 - $O(n^2)$ where n ~ 7000 ... expensive!
- Model size (con)
 - Contains about 80 million parameters
- Algorithm performance (pro)
 - State of the art (Hawthorne et al 2018)

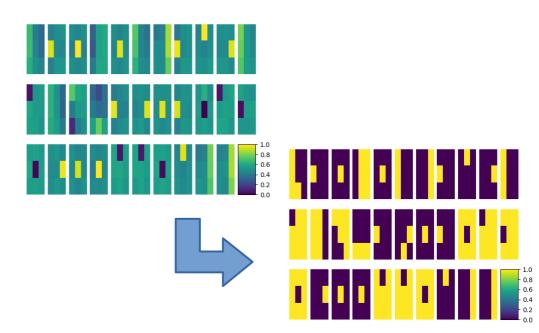
Conclusion

- Onset estimation much easier than activation estimation
 - Especially for "online" algorithms
 - Activation estimation perhaps ill-defined
- The fewer assumptions about recording conditions, the better
 - Training on noisy data can help
 - Evaluate on recordings closer to true recordings

Future Work

- Investigate offset detector
- Diminish model size and inference complexity



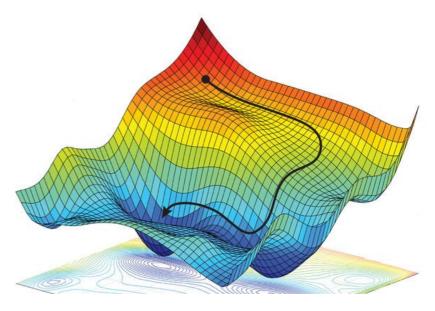


Thank You

Training Strategy

Training using Adam optimizer

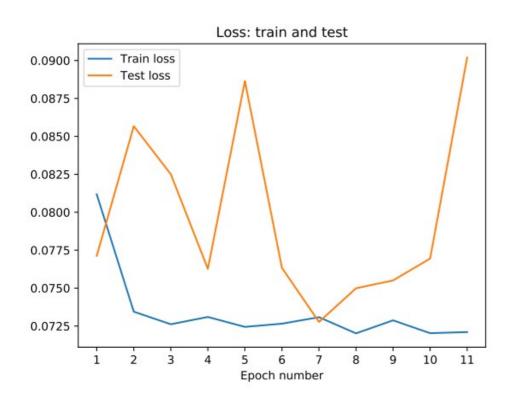
- Adaptive gradient descent algorithm
- Learning rate scaling
- Gradient clipping

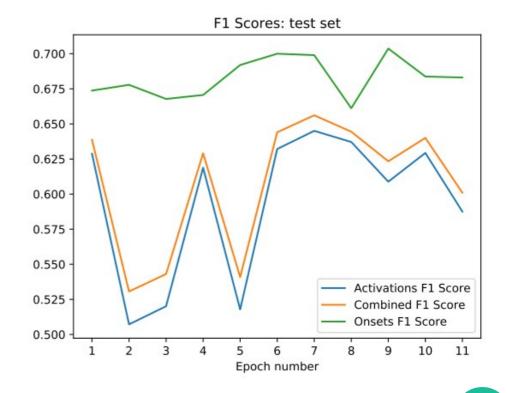


https://www.sciencemag.org/

Training Strategy

- Train until test loss reaches minimum
- Often corresponds to a desirable model





Advice for Training

- RNN needs gradient clipping
- Adaptive optimizers (e.g., Adam) need learning rate decay
- Data normalization can actually be hurtful

