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* Transcribe note activations and onsets from
recordings of piano performances.

Spectrogram Piano Roll




* Transcribe note activations and onsets from
recordings of piano performances.

* Only interested in activations (not velocity or
sustain information)

Spectrogram Piano Roll




Problem

* Example recording from dataset
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Problem

* Example of a real recording
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* We would like to transcribe recordings like the
latter

— We work with recordings of Glenn Gould

* But we only have examples like the former to work
with

— Real recordings noisy, more variation in speed, dynamic,
expression.

—



* We would like to transcribe recordings like the
latter

— We work with recordings of Glenn Gould

* But we only have examples like the former to work
with

— Real recordings noisy, more variation in speed, dynamic,
expression.

* Transcription should be performed “online”
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* Technique

— Convolutional neural network, recurrent neural network
* Initial results

— Performance on test set and real recordings
* Directions for improvement

- Adding noise and regularization
— Dataset augmentation

— Alternative piano roll representations

ﬂ



* Convolutional neural network (Kelz 2016)

|

“Slice” of piano roll
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“Slice” of spectrogram



* Example kernels from the frame CNN.




* Example kernels from the frame CNN.
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Methods

* Action of the kernels on some input




* Kernels and the resulting activations from the

frame CNN
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Activation Onset Note with offset
Kelz et al 2016 .7160 5094 2314
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* Musicis contextual

Activation Onset Note with offset
Kelz et al 2016 .7160 5094 2314
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* This motivates the use of recurrent networks
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* This motivates the use of recurrent networks

Unidirectional recurrent network

Goodfellow et al (2016) ﬂ



Network architecture

e Based on (Hawthorne et al 2018)
* Our LSTM only looks into the past (online)




Training Strategy

* Training using Adam optimizer
— Adaptive gradient descent algorithm
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— Gradient clipping

With clipping

NE=

(2016)

Without clipping

https://www.sciencemag.org/

J(w,b)

J(w,b)

Goodfellow et al




* Transcription of Mozart Sonata from test set
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* Mozart Sonata performed by Glenn Gould
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* Transcription of Mozart Sonata performed by Glenn
Gould
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* Transcription of Mozart Sonata performed by Glenn
Gould
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* Transcription of Mozart Sonata performed by Glenn
Gould
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Gould

* Transcription of Mozart Sonata performed by Glenn

Onsets and activations
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* Transcription of Mozart Sonata performed by Glenn
Gould
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Augmentation

* Notable difference between example in our dataset
and the recording performed by Gould




Augmentation

* Recording from dataset
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* Recording from dataset
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Augmentation

* Gould recording




Augmentation

* Gould recording
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Augmentation

* Gould recording

— Piano tuning is sharper
- Played at a faster tempo

— More room sound, different microphone techniques

ﬂ



Augmentation

* We can alter our data to be qualitatively like
Gould’s recordings

= Pitch shifting (here +25 cents)
— Time compression (here 25% faster)

— Reverb

ﬁ
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— Reverb
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Augmentation

* We can alter our data to be qualitatively like
Gould’s recordings

= Pitch shifting (here +25 cents)
— Time compression (here 25% faster)

— Reverb
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Regularization

* Some Gould recordings are much noisier than the
Yamaha and MAPS datasets

Comparison of background noise
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Regularization

* Some Gould recordings are much noisier than the
Yamaha and MAPS datasets
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Regularization

* Some Gould recordings are much noisier than the
Yamaha and MAPS datasets
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Regularization

* Some Gould recordings are much noisier than the
Yamaha and MAPS datasets
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Regularization

* Transcription attempt without regularization




Regularization

* Transcription attempt without regularization

Original
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Regularization

* Transcription attempt without regularization

Onsets and activations

Onsets only
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Regularization

* Transcription attempt without regularization

Onsets and activations

F6

F#5
G4 =
A2

A#1

tch

P

Onsets only

0.0 2.0 4.0 6.0 8.0

Time (seconds)



60.12


Regularization

* Transcription attempt without regularization

Onsets and activations

Onsets only
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Regularization

* Transcription attempt without regularization

Onsets and activations

Onsets only
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Regularization

* Transcription attempt without regularization

Onsets and activations

Onsets only
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Regularization

* Prevent algorithm from
over-fitting to noise-free
data

— Add unigue noise to each
training example

* Make algorithm invariant
to recording’s dynamic
range

Input image LCN
— Perform local contrast Goodfellow et al (2016)
normalization (LCN)




Regularization

* Transcription attempt with regularization

— Added unique noise to data points giving SNR of -40 dB
— Applied LCN

Onsets only




Regularization

* Transcription attempt with regularization

— Added unique noise to data points giving SNR of -40 dB
— Applied LCN

Onsets only
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Regularization

* Transcription attempt with regularization

— Added unique noise to data points giving SNR of -40 dB
— Applied LCN

Onsets only




F-Measure Scores: With and without regularization

Activation Onset

YAMAHA DKV & MAPS .6451 .8268

YAMAHA DKV & MAPS .6069 .7651
with augmentations and
NR

YAMAHA DKV & MAPS 5973 1367
with augmentations NR
and LCN

Google O&F 2018 .7830 .8229
(MAPS and offline)

Kelz et al 2016 (MAPS) 7160 5094

Note with offset
.2847

2279

2127

5022

2314

ﬂ



F-Measure Scores: evaluated on augmented data only

YAMAHA DKV & MAPS

YAMAHA DKV, MAPS
with augmentations

YAMAHA DKV & MAPS
with augmentations and
NR

YAMAHA DKV & MAPS
with augmentations, NR
and LCN

Activation
5594
5236

.5509

.5604

Onset
.7052
1252

.7429

.7189

Note with offset
.1886
.1894

.1952

1879

ﬂ



Model Revision

* Remove activations detector when only looking into the past




Architecture evaluation

* Inference complexity (con)

— 0O(n2) where n~ 7000 ... expensive!
 Modelsize (con)

— Contains about 80 million parameters
* Algorithm performance (pro)

— State of the art (Hawthorne et al 2018)

ﬂ



* Onset estimation much easier than activation
estimation

— Especially for “online” algorithms

— Activation estimation perhaps ill-defined

* The fewer assumptions about recording
conditions, the better

— Training on noisy data can help

— Evaluate on recordings closer to true recordings

ﬂ



* Investigate offset detector

* Diminish model size and inference complexity
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Training Strategy

* Training using Adam optimizer
— Adaptive gradient descent algorithm
— Learning rate scaling

— Gradient clipping
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Training Strategy

* Train until test loss reaches minimum

 Often corresponds to a desirable model

Loss: train and test F1 Scores: test set

0.0900 4 —— Train loss 0.700 -
—— Test loss
0.0875 A 0.675 A

0.0850 Uit Kﬁ\
“,
0.0825 A 0.625
0.0800 A 0:6001
0.575 A
0.0775 1
0.550 |
0.0750 - —— Activations F1 Score
0.525 A

——— Combined F1 Score

0.0725 A —— Onsets F1 Score

0.500 -

1 2 3 L 5 6 7 8 9 10 11
Epoch number Epoch number
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Advice for Training

* RNN needs gradient clipping

* Adaptive optimizers (e.g., Adam) need learning rate
decay

e Data normalization can actuallv be hirtful

Without clipping With clipping

J(w,b)
J(w,b)

w V
b

Goodfellow et al (2016)
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